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eventual solution is unique, but rather to explore the 
limits of deficiency in data and the initial phasing 
model to attain convergence to the correct solution. 

Unlike the more complicated model used by Ray- 
ment (1983), a simple spherical-shell model was used 
for a virus. Similarly, a solid sphere might be used 
for a protein molecule with sufficiently high noncrys- 
tallographic symmetry. It was shown that the cen- 
tricity of the phases could be eliminated automatically 
as resolution increased under the stringent conditions 
where the inclination between the molecular and crys- 
tallographic twofold axes was only 2.5 ° . It was also 
shown that the choice of a suitable outer radius is 
critically important. Although time-consuming, sys- 
tematic trials using phase extension can be used to 
establish a suitable external radius; the internal radius 
is of less importance. A parallel study (Chapman, 
Tsao & Rossmann, 1992) shows how the radii can be 
determined directly from the diffraction data. 
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Abstract 

The structure determination of canine parvovirus 
depended on the extension of phases calculated 
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initially from a spherical-shell model [Tsao, Chap- 
man, Wu, Agbandje, Keller & Rossmann (1992). Acta 
Cryst. B48, 75-88]. Such ab initio phasing holds the 
promise of obviating initial experimental phasing by 
isomorphous or molecular replacement, thereby 
expediting the structure determinations of spherical 
virus capsids. In this paper, it is shown how param- 
eters such as radii, D N A  density and particle 

© 1992 International Union of Crystallography 
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positions may be determined and refined from diffrac- 
tion data with sufficient precision to start phase 
extension from 20 A resolution for a virus of approxi- 
mately 122 ~ radius. 

Introduction 

The capsids of spherical viruses have long been the 
object of intensive structural investigations, both 
because of their intrinsic biological interest and 
because the atomic structure provides understanding 
of viral infection, immune response and drug design 
(reviewed in Liljas, 1986; Rossmann & Johnson, 1989; 
Harrison, 1990; Chapman, Giranda & Rossmann, 
1991). Largely because of their size, usually exceeding 
a diameter of 190 A, their crystallographic structure 
determination remains challenging and relatively few 
have been solved. Phases can be refined from within 
a large convergence radius to considerable accuracy 
by imposing highly redundant icosahedral noncrys- 
tallographic symmetry (Rossmann, 1990). A major 
bottleneck remains the determination of initial 
phases. In the past, initial phases have been deter- 
mined by isomorphous replacement, for example, 
tomato bushy stunt virus (Harrison, Olson, Schutt, 
Winkler & Bricogne, 1978), satellite tobacco necrosis 
virus (Liljas, Unge, Jones, Fridborg, L/Svgren, Skog- 
lund & Strandberg, 1982), human rhinovirus 14 
(Rossmann, Arnold, Erickson, Frankenberger, 
Griffith, Hecht, Johnson, Kamer, Luo, Mosser, 
Rueckert, Sherry & Vriend, 1985), poliovirus (Hogle, 
Chow & Filman, 1985) and black beetle virus (Hosur, 
Schmidt, Tucker, Johnson, Gallagher, Selling & 
Rueckert, 1987). It has also been possible to solve, 
with homologous atomic models, the structures of 
related viruses by molecular replacement, for 
example, mengovirus (Luo, Vriend, Kamer, Minor, 
Arnold, Rossmann, Boege, Scraba, Duke & Palmen- 
berg, 1987), human rhinovirus 1A (Kim, Smith, Chap- 
man, Rossmann, Pevear, Dutko, Felock, Diana & 
McKinlay, 1989) and foot-and-mouth disease virus 
(Acharya, Fry, Stuart, Fox, Rowlands & Brown, 
1989). In some cases phase refinement was started at 
resolutions as low as 8 ~ (Luo et al., 1987). It has 
also been shown that completely unrelated models 
can be used, provided that phase refinement is initi- 
ated at low enough resolution (Valeg~rd, Liljas, Frid- 
borg & Unge, 1990; McKenna, Xia, Willingmann, 
Ilag, Krishnaswamy, Rossmann, Olson, Baker & 
Incardona, 1991). This progression suggested that it 
might be possible to extend phases from low resol- 
ution after calculating initial phases from a spherical 
shell of uniform density. 

Canine parvovirus (CPV) is a small non-enveloped 
single-stranded DNA virus. Parvoviruses infect the 
cells of proliferating tissues, causing serious diseases 
that can be fatal in many mammals, including man 
(reviewed by Pattison, 1990). The structure of CPV 

was of interest, not only because of its potential use 
in medical research, but also to see whether the /3- 
barrel motif, common to picornaviruses and many 
plant and insect RNA viruses (reviewed by Rossmann 
& Johnson, 1989; Harrison, 1990), would be found 
in other families of viruses. The CPV structure was 
the first of its family to be determined, so it was not 
possible to determine initial phases from the structure 
of a related virus. Crystal production was difficult 
and it took two years to complete native-data collec- 
tion. Therefore, structure determination by conven- 
tional isomorphous replacement methods appeared 
to be unrealistic and unattractive because it would 
have required the collection of near-complete data 
sets of several potential derivatives. To avoid this, 
attempts were initiated to determine phases ab initio 
as discussed by Tsao, Chapman & Rossmann (1992) 
and in this paper. 

A similar approach had been used to determine 
phases for southern bean mosaic virus (SBMV) 
(Johnson, Akimoto, Suck, Rayment & Rossmann, 
1976) and polyoma virus (Rayment, Baker, Caspar 
& Murakami, 1982) to 22.5 A resolution. With SBMV, 
initial phases were calculated from the Fourier trans- 
form of a solid sphere with a diameter of 281 A, the 
nearest-neighbor contact distance within the crystal. 
The Fourier transform agreed well with spherically 
averaged structure-factor amplitudes between 60 and 
35 ~ resolution. Phases were refined through the 
imposition of icosahedral symmetry and extended to 
22.5 A resolution where the agreement between 
observed and back-transformed structure-factor 
amplitudes was nearly random. In SBMV, the particle 
center lies in a special position with 32 symmetry, 
limiting the resolution to phases that could be exten- 
ded, since icosahedral averaging could never break 
the centric nature of the initial phases. With polyoma 
virus (Rayment, Baker & Caspar, 1983), phases were 
initially calculated from a decorated spherical- 
shell model based on electron microscopy results. 
This broke the center of symmetry and permitted 
successful phase extension to 22.5 ~ resolution. 

In attempts to avoid isomorphous replacement, 
efforts have been directed to initiate phase extension 
for several viral structures using a variety of spherical 
and other low-resolution phasing models (Tsao, 1990; 
McKenna et al., 1991). Prior to the structure determi- 
nation of q~X 174, about 15 unsuccessful attempts were 
made to extend phases from various models, each 
requiring extensive use of supercomputer time in 
phase refinement before determining that the initial 
phases were inadequate. Simulations with structure 
factors calculated from a model (Tsao, Chapman & 
Rossmann, 1992) show that the model outer radius 
and position are critical to the success of phase 
extension. An error of 2% in outer radius was 
sufficient to introduce significant error in the phases, 
while 3% was sufficient to completely foil phase 
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refinement. (Determination of the external radius of 
CPV from packing considerations would have resul- 
ted in an error of 5%.) Similarly, displacement of the 
particle position by 0.006 fractional units introduced 
a mean phase error after refinement of 30 ° at 20/1, 
resolution. Thus, the motivation was strong to develop 
a method capable of determining spherical-model 
parameters directly from the diffraction data. 

Earlier treatments of low-resolution diffraction 
from viruses considered the Fourier transform (in 
spherical polar coordinates) as a series of radially 
dependent Bessel functions modulated by direc- 
tionally dependent icosahedral harmonics (Finch & 
Holmes, 1967). These treatments show that the non- 
spherically symmetric topology of the virus is expec- 
ted to give a significant component to the structure 
amplitudes. The non-spherical modulations were 
exploited by Jack & Harrison (1975) in structural 
interpretation of the solution scattering of cucumber 
mosaic and polyoma viruses and were cited as the 
reason for increasing loss of spherical symmetry in 
the diffraction pattern of tomato bushy stunt virus 
between 100 and 40 A resolution (Harrison, 1969). 
Although a low-order non-spherical approximation 
might be useful in phase initiation where a low- 
resolution spherically symmetric model is inadequate, 
a simple spherical shell was preferred in this work, 
to minimize the chances of compromising phase 
refinement through possible errors in the initial phas- 
ing model. Non-spherical modulations should not 
introduce systematic error in spherical parameters, 
because the spherically averaged value of the struc- 
ture amplitude, as given in equation (18) of Finch & 
Holmes (1967), is independent of non-spherical 
modulations. In using a spherical shell, the non- 
spherical modulations pose two other potential 
problems. 

(1) Spherical parameters must be fitted to the 
spherical component of the structure amplitudes, 
which become smaller as the resolution is increased. 
This paper shows that such fitting is possible even at 
resolutions where the spherical component is minor, 
given that there is a data-to-parameter ratio of about 
200. 

(2) The initial phase of a reflection may be based 
on only a small component of the structure factor, 
requiring that the phases be refined from near-random 
initial values. 

The methods discussed here were developed during 
the structure determination of CPV. Spherical-shell 
parameters, determined through an early application 
of these methods (when only 35% of the data were 
available), were used to calculate the initial phases 
for CPV. These phases were sufficient for extension 
to 9/~ and to determine the site of substitution of a 
single isomorphous derivative (SIR) (Tsao, Chap- 
man, Wu, Agbandje, Keller & Rossmann, 1992). SIR 
phases were used as a starting point for extension to 

3.25 A, although Tsao, Chapman, Wu et al. (1992) 
showed that, if the center of icosahedral symmetry 
had been refined during the extension from 20 to 9 A, 
it would not have been necessary to use SIR phase 
information. During the phase extension, the 
spherical-shell parameters were refined again, using 
a more complete data set. It is these improved param- 
eters (external and internal radii, particle position 
and now also the relative nucleic acid and protein 
densities) that are presented here, because, as will be 
demonstrated, they would have generated more 
accurate initial phases if it had proved necessary to 
restart the phase extension. Related papers investigate 
how much error in data and model parameters may 
be tolerated (Tsao, Chapman & Rossmann, 1992), 
describe the structure determination of CPV (Tsao, 
Chapman, Wu et al., 1992) and the results (Tsao, 
Chapman, Agbandje, Keller, Smith, Wu, Luo, Smith, 
Rossmann, Compans & Parrish, 1991). 

Experimental methods 

The virus was prepared according to the procedure 
of Paradiso (1981) and modified as in Luo, Tsao, 
Rossmann, Basak & Compans (1988) and Tsao et al. 
(1991). Solution scattering patterns were collected by 
methods similar to those used by Schmidt, Johnson 
& Phillips (1983), except that the sample concentra- 
tion was about 10 mg m1-1 rather than 150 mg m1-1 
because of the difficulty of propagating sufficient virus 
in mammalian cell lines. To compensate, long 
exposures of up to one week were required with a 
wider beam than had been used previously (Schmidt 
et al., 1983) at a generator power of 35 kV x 25 mA. 
Cu K/3 radiation was removed with a 0.01 mm thick 
nickel filter. Four sets of slits were used along a 2.40 m 
helium path to collimate the beam. The sample-to-film 
distance was 268 mm. 

Films were scanned with a 50 Ixm raster. Prior to 
radial averaging, the film center was estimated from 
the center of mass of optical density and accurately 
determined by maximizing ~ [ A I / A d * [ ,  where I is the 
radially averaged film density, d* is reciprocal resol- 
ution and the derivative is estimated numerically. The 
three films within each film pack were scaled to each 
other using a cubic function of optical density with 
coefficients fitted by linear least-squares refinement. 
A variance-weighted mean of the radially averaged 
optical densities (OD) from all films was calculated 
assuming Poisson counting statistics for each pixel. 
Programs to refine model parameters were tested by 
using data extracted from Fig. 3 of Wobbe, Mitra & 
Ramakrishnan (1984) and yielded radii of 124.0 and 
75.6/~ for Kilham rat virus compared to the published 
values of 124.3 and 74.0 ~.  

The data collection by oscillation photography and 
processing of the crystallographic data are described 
in Tsao, Chapman, Wu et al. (1992). 
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T h e o r y  

Optimization of model parameters was achieved by 
searches and then least-squares refinement in 
reciprocal space against the observed X-ray data. For 
a set of spheres of uniform protein density pp at 
positions Sn (n = 1 to N) in the unit cell, the structure 
factor Fs(h) for reflection h is 

N 

F~(h) = E (Uo/V)ppGh(Ro) exp (27rjh • S,) ,  
n = l  

where Uo is the volume of each sphere of radius R0, 
V is the volume of the unit cell and Gu(Ro) is the 
Fourier transform of a solid sphere normalized to 1 
at Ihl = 0 (Rossmann & Blow, 1962); 

Gh(Ro) = 3[sin (2~rlhlgo) 
-2~lhlRocos (27rlhlRo)]/(27rlhlgo) 3. (2) 

Similarly, for spherical shells with internal radius R~, 
filled with nucleic acid of density PNA, 

N 

F~(h)= E [(Uo/V)ppGh(Ro)-(U~/V) 
r l = l  

×(pp-pNA)Gh(R,)]exp(2rrjh'S~) (3) 

N 

= (pp/V)}rrRao Y~ [Oh(Ro)-  (R,/Ro)3 3 
rl-~ l 

×(1-p'Ng)Gh(R,)exp(2rrjh'S,)], (4) 

where P~A is a relative density of the nucleic acid, 
defined as p~A = (PNA/PP)- 

As the resolution increases, a real virus deviates 
more noticeably from that of a spherical shell. Let 
Fu (h) be the unknown non-spherical part of the struc- 
ture factor F~a~(h), while F~(h) is the spherical part 
represented by (2). Thus 

and 

Fcalc(h) = Fs (h) + F,, (h) 

2 2 2 ( A s ) ,  Fcalc = Fs + Fu -IF~I IFul cos 

where Aa is the difference in phase between Fs and 
F,,. For the average of a sufficiently large number of 
reflections, it can be assumed that Aa is random and, 
hence, 

2 2 2 
Fcalc--~ F~ + Fu. (7) 

Let F 2 be approximated by a smoothly increasing 
function with resolution: 

F ~ = [ J + K  exp(Llhi)+Mexp(Nih[2)] 2. (8) 

This is not intended to approximate closely the non- 
spherical component of individual amplitudes, which 
is likely to show considerable variation (Finch & 
Holmes, 1967; Harrison, 1969). However, the 
approximation facilitates the fitting of a spherical- 
shell transform that has zero amplitude at nodal resol- 
utions to the observed structure amplitudes. 

Using (7), (4), (2) and (8) it is now possible to set 
up a least-squares refinement procedure to minimize 

2 2 2 h (Fobs-- kFcalc) from which the parameters 
Ro, R,, P~A, J, K, L and M, the scale factor k and the 
positions S,~ can be refined. The latter will be related 
by space-group symmetry and, hence, it is in general 
only necessary to refine $1, the particle position in 
the reference asymmetric unit. 

Once the model parameters have been determined, 
(1) (4) can be used to calculate phases for initial phase 

extension. The Fourier coefficient used to represent 
the electron density for averaging can be weighted 
by figures of merit, m. These can be estimated by the 
ratio of Fs and Fcal¢. 

The normal least-squares equations that were used 
to calculate the shifts in the model parameters during 
their refinement were sometimes not well conditioned. 
This is because some of the parameters may be corre- 
lated with one another. For example, when the inter- 
nal density, p ~A, is near unity, internal radius Ri has 
little effect on the overall Fourier transform of the 
model. To avoid large correlated changes of param- 
eters that have little effect on the quality of the fit, in 
the initial cycles of refinement, eigenvalue filtering 
was used to accept only those shift vectors that gave 
greatest improvement of the residual (Diamond, 
1971). 

With most space groups there are certain 'special' 
positions of a spherical object which would give zero 
calculated intensity for a class of reflections. For 
example, in space group P21, a spherical object 
placed at (~, y, ¼) would give zero intensities for all 
reflections with h + k + l = odd. Weak and 'non-posi- 
tive' intensities are usually rejected during processing, 
leaving the accepted intensities with experimental 
errors that tend to increase their size. This effect would 
increase the apparent distance of the particle away 

(5) from the 'special' position. Hence, the class of reflec- 
tions for which the calculated intensities are small or 
zero may have to be omitted from the data set. 

(6) As resolution is increased, (2) quickly approxi- 
mates to its high-resolution limit, 

G =  3 cos (2rrlhlR)/(2zrlhlR) 3, (9) 

which is a damped cosine oscillation. For a virus with 
outer radius of 120 A, a series of models with outer 
radii differing by 12 ~ will have approximately the 
same calculated intensity distribution near 20 A resol- 
ution (Fig. 1). The difference between radii, zaR, that 
give similar intensity distributions is inversely propor- 
tional to both radius and Ihl. Unless special efforts 
have been made to collect exclusively low-resolution 
data, this ambiguity can be difficult to resolve. 

In the absence of very low resolution crystallo- 
graphic data there needs to be an independent esti- 
mate of the outer radius, of accuracy better than half 
AR, to determine the absolute model radii. X-ray 
solution scattering is one of several methods that may 
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be applicable. With minor modification, the same 
refinement methods can be used to optimize model 
parameters to solution scattering data. The measured 
intensity is dependent only on resolution, while posi- 
tion is irrelevant to the calculation of intensities. The 
radii and P~A can be defined similarly to the crystallo- 
graphic data. The background can be approximated 
in the same way as IFul [(8)]. 

If the observed intensities are fitted with Ic's that 
are one node shifted from It's calculated with the 
correct model, then G will be of inverted sign and 
calculated phases will be in error by exactly 180 ° 
[(2)]. This is the Babinet opposite solution and maps 
calculated with such phases would have the negative 
of the correct electron density. Note, however, that 
the periodicity of (9) is dependent on the radius and, 
hence, the Babinet opposite alternative solution can 
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Fig. 1. Fourier transforms of spheres for different radii. (a) The 
Fourier transform of a sphere of radius 120,~, plotted as a 
function of resolution. Note how it rapidly becomes a damped 
oscillating function (b). In a diffraction experiment, intensities 
not structure factors are measured. Plots show the log of the 
intensity for radii of 120 A (solid line) and 132 ~ (dashed line). 
Between 25 and 20A, resolution, calculated intensities are 
similar, although the peaks are shifted by one node relative to 
each other. Indeed, if the low-resolution data are not measured, 
there may be a series of discretely different radii (e.g. 108, 120, 
132, 144, . . . )  that fit the data equally well. 

be expected to be valid only over a limited resolution 
range. 

Refinement of model parameters for CPV 

Unfortunately, due to the low sample concentration, 
long exposure and wide incident beam, the solution 
scattering of CPV exhibited more peak blurring and 
lower signal-to-background ratio (Fig. 2) than has 
been obtained for plant viruses (Schmidt et al., 1983). 
The initial background coefficients were determined 
by fitting an exponential function to the observed 
optical density at the nodal points. Model and back- 
ground parameters were then refined simultaneously 
by least squares from many different starting points. 
Residual errors between calculated and observed 
optical densities of less than 4% were achieved with 
outer radii of about 128 A,, inner radii of either 89 or 
75 A. and nucleic acid density (P~A) of 1.67. The outer 
radius from solution scattering agreed with crystal- 
packing calculations. The value of P~A agreed well 
with that found for cowpea mosaic virus (1.57-1.65) 
(Schmidt et al., 1983). However, the precision of 
determining the outer radius from solution scattering, 
which extended to about 75]k resolution, was 
insufficient to be certain of obtaining the correct 
Babinet solution for the X-ray data, which started at 
about 30 A, resolution. This would not have been a 
problem had it been possible to collect data of the 
quality of Schmidt et al. (1983). 

The model parameters were then optimized against 
crystallographic data that were 85% complete 
between 30 and 13.5 A, resolution. The high resolution 
limit was selected because oscillations of a somewhat 
regular periodic nature in (IFobsl) appeared to extend 
to 13.5 ]k resolution. In retrospect, this was exces- 
sively optimistic. Initially, refinement was against only 
the h + k + l = even reflections because the particle 
was near a 'special' position. A smoothly rising 
approximation to (IF~I) was determined by fitting the 

A 14 

10 

V6 
4 y 1~0 5~ 40 , 30 (A) 

0 0.01 0.02 0.03 (./k "l) 

R E S O L U T I O N  

Fig. 2. Solution scattering. Observed optical densities (solid line) 
are compared to those calculated from a model with outer radius 
of 128.3 A and inner radius of 89.4/~ (dotted line). 
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coefficients of (8) to the minima of the <lFol> distribu- 
tion. Simultaneous refinement of these coefficients 
and model parameters proved unstable, so (IF.I) 
coefficients were fixed. Parameter determination star- 
ted with a two-dimensional R-factor search for the 
inner and outer radii, using a particle position of 
(~, O, ¼) and PNA of 1.67 (Fig. 3). Physically reasonable 
solutions were found with outer radii of 130 and 
120/~ and inner radii of 94 and 83 A, respectively. 
For a partial specific volume of 0.72 cm 3 g-t, typical 
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models .  
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Fig. 4. A n  e x a m p l e  o f  an  R - f a c t o r  search  for  the pos i t ion  o f  the  
par t ic le  center .  This  search  was  d o n e  with an ou te r  rad ius  o f  
120/~ and  an  inner  rad ius  o f  83 /~  us ing all da ta  be tween  30 
and  13.5 A (Table  1). It is u n n e c e s s a r y  to search  z > ¼  because  
there  is a t w o f o l d  axis o f  s y m m e t r y  at (t,  0, t )  w h e n  the  search  
is d o n e  with a c e n t r o s y m m e t r i c  p robe .  

Table 1. Searches and refinements to determine the 
position o f  the particle center 

(x, z) d i s p l a c e m e n t  f r o m  
(L o,~)(h) 

Radii  M e t h o d  h + k + 1-- even All ref lect ions 

120/83 Search ( - 1.5, - 1.5 ) ( - 1.8, - 1.9) 
120/83 Refinement Unknown (-0.9, -3.1 ) 
130/94 Search ( -0.4, - 1.3) (0.3, -2.1 ) 
130/94 Refinement (-0.1,0.0) (I.0, -2.6) 

Refined at (0.8,-0.8) 
3.8 A* 

* The position was refined after phase extension by searching for the 
particle center that gave minimum root-mean-square deviation of the electron 
density when comparing the 60 asymmetric units related by noncrystallo- 
graphic symmetry (Tsao, Chapman, Wu et al., 1992). 

of whole viruses (Table 6 of Smith, 1968), the outer 
radius would be approximately 118 A. Assuming 
packing of spherical viruses within the crystal, the 
outer radius would be 129 A. Previous structural 
investigations of spherical viruses showed that the 
capsid thickness is typically 30-40 A (Schmidt et al., 
1983). 

Both sets of radii were used to determine the posi- 
tion with an R-factor search on a 2 A grid centered 
at (¼, y, ~). At each position the radii were fixed but 
a scale factor was refined. Searches were performed 
using all reflections and the h + k + l = even reflections 
only (Fig. 4; Table 1). Retrospective comparison with 
the position refined after phase extension to 3.8 
(Tsao, Chapman, Wu et al., 1992) showed that the 
worst of these searches was in error by 2.4 A. 

The radii, position and scale factor were then simul- 
taneously refined by least squares. The number of 
eigenvectors accepted was incremented from one to 
four. Alternative refinements were started with both 
possible radii (130 and 120 A) and associated param- 
eters. Refinement against the full data set, using only 
the h + k + l = even reflections, gave rise to positions 
that differed by only 0.4 A, suggesting that the particle 
center was sufficiently displaced from (-~, y, ~) that the 
h + k + l = odd reflections need not be excluded any 
longer. It proved beneficial to refine occasionally just 
the scale factor, probably because the number of 
selected eigenvectors was less than the number of 
parameters. The DNA density was then allowed to 
change. The number of eigenvectors accepted was 
incremented from three to six with ten cycles of 
refinement for each. The overall drop in R factor was 
small, 0.53 and 0.71% for the models with an outer 
radii of 130.0 and 121.5 A, respectively (Table 2). 
Noteworthy is the large drop in DNA density from 
1.7 to about 1.2, probably because of the inclusion 
of relatively high resolution (13.5 A) data where the 
effect of the DNA density would be attenuated 
because of higher disorder than in the protein. 

Unfortunately, the small difference in R factor 
between the models with outer radii of 121.5 and 
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Table 2. Refined parameters for models with outer radii 
of approximately 130 and 120 A for data between 30 

and 13.5 ~ resolution 

Parameter Refined values 

Outer radius (,~) 121.50 130.00 
Inner radius (t~,) 81.70 91.70 
Nucleic acid density, PEA 1.16 1.32 
Xz ) displacement from (~, 0, ~) -3.150"91 -2.610"05 
Scale factor 88139 93619 
R factor (%) 44.6 44.4 

1 3 0 . 0 ~  gave no indication of  which was correct. 
Crystal  packing and the solution scattering favored 
130.0 A, but  compar ison  with the models  for Ki lham 
rat virus (outer  r a d i u s =  120.6-124.3 A)  (Wobbe 
et al., 1984) favored 121.5 A. Phases calculated for 
models similar to both of  these had,  by now, been 
successfully extended to 13 ~ (Tsao, Chapman ,  Wu 
et al., 1992), converging on either the true solution 
or its Babinet inverse. This showed that either solution 
was sufficient to initiate phase extension towards  
atomic resolution. The structure determinat ion 
enabled a retrospective assessment of  the accuracy 
of  starting phases calculated from the refined 
spherical-shell  models. 

Retrospective determination of the radii 

(1) From the atomic structure 

The radial  distribution, qgatom(R), of atoms from 
the particle center (Fig. 5) shows that the inner and 
outer  radii are approximate ly  86 and 124 ik, respec- 
tively. However ,  due to large surface features on CPV 
(Tsao et al., 1991), the distribution is not a step 
function,  as a spherical shell would imply. Therefore,  
the relevant radial  cut-offs were not clearly deter- 
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0.00 
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Fig. 5. Radial atomic density distribution for CPV. The distribution 
as calculated from the atomic coordinates is shown by a solid 
line. The dashed line is a step function of approximately equal 
area, fitted by eye to the distribution. This suggests that the best 
uniform-density shell model would have radii of about 86 and 
124A. 

Table 3. Refinement of parameters against the Fourier 
transform of the spherically averaged structure 

Parameter Refined values 
Resolution range (.~) oo-->50 70-->40 55-->25 25-->20 22418 
Outer radius (/~,) 128.4 125.8 123.4 123.3 119.3 
Inner radius (/I,) 82.8 84.2 87.7 78.0 78.9 
R factor (%) 1.0 12.3 50.9 29.7 37.3 

mined. This problem can be solved by taking the 
Fourier  t ransform of  the distribution,  and then deter- 
mining the radii of  the G funct ion that  fits optimally.  
Surprisingly, the optimal outer  radius decreased as a 
function of  the resolution (Table 3). For da ta  in the 
resolution range ofoo to 50 A,  the optimal radius was 
128 A,  but for data  in the 22 to 18 A range it was 
119 A. When resoutions below 33 A were omitted,  an 
outer  radius of  130 A was only of  slightly worse fit 
than 123 A,  but graphical  compar ison  of  the G func- 
tions (Fig. 6) showed that,  by 22 A,  the G function 
for R0 = 130 A had inserted an extra node relative to 
a G function for R0 = 121.5 A. 

Together,  these results show that 121.5 and 81.7 
were reasonable  model  radii for phase extension from 
20 ,~. They also show that  model  parameters  cannot  
be ext rapola ted  from very low resolution, ra ther  they 
should be refined using the data  from which phases 
are to be extended.  The resolution dependence  for 
the determinat ion of  the outer  radius arises presum- 
ably because CPV is not a spherical shell of  uniform 
density. 

(2) From refined phases 

In the CPV structure determinat ion (Tsao, Chap-  
man,  Wu et al., 1992), phases from a spherical shell 
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Fig. 6. The Fourier transform of the spherically averaged CPV 
atomic structure is shown as a solid line. The unscaled Fourier 
transforms are shown of spherical shells of radii 121.5 and 81.7 
(dashed line) and 130.0 and 91.7 A (dotted line), both of which 
agree well with that of the spherically averaged structure at 
resolutions lower than 50 A resolution (not shown). At 22 
resolution the transform with an outer radius of 130 ,~ is out of 
phase with both that of 121.5 ~ and that of the spherically 
averaged structure. An outer radius of 121.5/~ is a compromise 
between optimal agreements at 30 and 20 A resolutions. 
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had been extended to 9 A resolution where they were 
used to determine the location of a heavy-atom 
derivative. Phases calculated from the isomorphous 
derivative between 15 and 9 A resolution were refined 
and extended back to 150/~ resolution. Hence, these 
low-resolution phases are entirely independent of a 
starting spherical model and in this analysis are con- 
sidered as the 'true' phases. During the phase back- 
extension the nucleic acid density within 70 A of the 
particle center was repeatedly set to zero, as also was 
the external solvent. Hence, the 'true' phases will be 
biased by this assumption. 

Using the particle position as refined at high resol- 
ution (Tsao, Chapman, Wu et al., 1992), a search was 
made for the inner and outer radii (Fig. 7a) which 
gave the optimal agreement between model and 'true' 
phases for data from 30 to 13.5/~ resolution. Thus 
the data used here were the same as used in the 
original model parameter determination. Optimal was 
defined as that giving the highest absolute value of 
the IF[-weighted mean cosine phase difference, 
(cos (A~)). The search indicated that the refined outer 
and inner radii that had been determined from the 
amplitudes (Fig. 3; Table 2) were within 1.0 and 3.5 A, 
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Fig. 7. Retrospective searches for optimal models. [Fl-weighted 
mean cosine phase differences between spherical-shell and back- 
extended phases are shown as functions of inner and outer radii 
in (a) and (b) and position in (c). The functions are contoured 
in steps of 0.01 with negative values shown in dashed lines. (a) 
and (c) were calculated for resolutions between 30 and 13.5 .~ 
and (b) was calculated for 30 to 20 A. In (a) and (b) are marked 
the points corresponding to the refined models and model 128, 
the model used in the actual structure determination of CPV 
(Tsao, Chapman, Wu et al., 1992). In (c) are marked: the highest 
point (*); the position refined to 3.8 A (A) (Tsao, Chapman, 
Wu et al., 1992); the position of (~, 0, ¼) ((~)); the position refined 
at 13.5/~ (11) with a spherical shell of  outer radius 121.5/~. 
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Table 4. The quality of  phases for spherical shell models 

Outer  Inne r  Resolut ion  
radius radius o f  da ta  
(A) (A) (A) 
128.0 85.0 30-20 

121.5 81.7 30-20 

122.0 85.0 30-20 

121.5 81.7 30-13.5 

122.0 85.0 30-13.5 

130.0 91.7 30-13.5 

131.5 93.5 30-13.5 

(cos Aa)* C o m m e n t  

0.065 Used for CPV phase 
determination 

0.127 Refined parameters for 
30-13.5/~, data 

0.152 Model with best 
agreement with 
true phases 

0.075 Refined parameters for 
30-13.5 A data 

0.099 Model with best 
agreement with 
true phases 

-0.064 Refined parameters for 
30-13.5 A data 
(Babinet) 

-0.076 Model with best 
agreement with the 
Babinet inverse of 
the true phases 

* (cos zaa) is the IFl-weighted mean cosine phase difference between phases 
obtained from a spherical shell model and 'true' CPV phases. 

respectively, of those that would have given the most 
accurate phases. When repeated within the resolution 
range 30 to 2 0 ~  used for the initial CPV phase 
extension, spherical models can better approximate 
the 'true' phases (Table 4). Phases calculated from 
the model using parameters refined against the struc- 
ture amplitudes were slightly worse than optimal but 
significantly better than the phases derived from the 
model used in the actual CPV phase extension. 

The electron density of the nucleic acid 

Unlike the radii and position, the refined nucleic acid 
density value can be validated only indirectly, because 
the 'true' phases were determined by back-extension 
in which the nucleic acid was set to zero for regions 
within 75/~ of the viral center. If the value of PNA is 
arbitrarily changed from 1.2 to 0.0, then the outer 
radius of the model that best fits the structure ampli- 
tudes increases by 4/~ (Fig. 8). The similarity of the 
refined radius (121.5~) to that refined against crys- 
tallographic data for empty (DNA-lacking) varions 
(120.5 A) (Wu, Keller, Agbandje, Tsao, Chapman & 
Rossmann, unpublished results) and to the radius 
(122/~) that gives best agreement to the 'true' phases 
(calculated when P~qA was set to zero) suggests that 
the refined value of PEA for full virions (Table 2) is 
at least approximately correct. This value of PEA, 
refined using data to 13.5/~ resolution (1.2), is lower 
than that when refined with data to 20 A resolution 
(1.5) and also lower than that refined against solution 
scattering data (1.7). This last value agrees with that 
found from solution scattering data for cowpea 
mosaic virus (Schmidt et al., 1983), while the decrease 
of P E A  with increasing resolution is as expected if 
most of the nucleic acid is disordered. 

Three models were tried for the initial CPV phasing 
trials (Tsao, Chapman, Wu et al., 1992). Model 128" 
was consistent with packing considerations and the 
solution scattering. The parameters of models 122 
and 132 were similar to those reported in this paper, 
but these models were selected at an earlier stage of 
refinement, when PEA was still fixed at 1.67. However, 
in all cases PEA was reset to zero prior to phase 
calculation and refinement. By comparing the agree- 
ment of structure-factor magnitudes (Fig. 8), it is clear 
that when PEA is set to zero, the optimal outer radius 
increases from 122 to 126/~, making model 128 the 
best of the three. This suggests that, if PEA is to be 
set to zero for initial phase calculation, more 
appropriate radii would be selected through the impo- 
sition of this constraint during parameter refinement. 
However, as can be seen by comparing Fig. 8(c) with 
Fig. 7(a), the best model when PEA = 0 would have 
a significantly poorer (cos (A~)) (0.095) than optimal 
(0.152). This shows that it would be better to refine 
PEA and have independent nucleic acid and solvent 
densities during phase refinement. 

When considering the effects of the nucleic acid 
region, examination of (9) shows that changing P~A 
from 1.16 to 0 introduces a mean change of 34% in 
the Fcalc.  Note also that setting Ri = 0 is the same as 
setting PEA = 1.0 and corresponds to a mean change 
in Feaze of 4% for CPV. Thus, the refined inner radius 
of full virions will be much less precise than the outer 
radius (Figs. 7 and 8), but also less important in the 
initial phasing provided that the refined P~A value is 
used. 

While retrospectively examining the success of 
model 128, it is interesting to examine why model 
128 led to the Babinet opposite solution in spite of a 
positive correlation of phases between model 128 and 
back-extended phases for resolutions of 30 to 20 
(Fig. 7b). A comparison of (cos A~) as a function of 
resolution for models 122 and 128 shows that, in the 
22 to 20 A resolution range, the correlation becomes 
negative for model 128 (Fig. 9). Apparently, it is the 
narrow outermost shell that is most significant in the 
extension of phases to higher resolution. It is also of 
interest to note that model 128 proved successful, 
although, in retrospect, it is found that between 30 
and 20 A the initial phases had a mean random error 
of 85 ° . The success of the SIR extension, from an 
initial phasing of only 5% of the reflections (Tsao, 
Chapman, Wu et al., 1992) attests to the power of the 
application of 60-fold noncrystallographic symmetry. 
It is not surprising, with such gross oversampling, 
that the iterative refinement methods used can correct 
a large random error. While large random errors are 
tolerable, the sensitivity of phase extension to model 
parameters (Tsao, Chapman & Rossmann, 1992) and 

* The n u m b e r  indicates  the outer  radius,  in A, of  the model .  
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the difficulty of finding suitable models by trial and 
error (Tsao, 1990; McKenna et al., 1991) indicate that 
it is important that the initial phase error is neither 
systematic nor consistent with an incorrect model. 

Applicability to other structure determinations 

CPV had been thought to be an ideal candidate for 
this approach to phasing because negatively stained 
electron micrographs of CPV had revealed little sur- 
face feature, suggesting that it could be approximated 

by a spherical-shell model. In retrospect (Tsao et al., 
1991), CPV is seen to have considerable surface relief 
with spikes and depressions such that the distance 
from the center to the outer surface varies from 112 
to 140/~. If surface topology is more extreme, or if 
the viruses are oriented such that centricity cannot 
be removed by averaging, a more detailed (non- 
centric) model may be required, such as might be 
available from frozen hydrated electron microscopy 
images (reviewed by Chiu, 1986). Due to the sensitiv- 
ity of the phases to the outer radius, it will be impor- 
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Fig. 8. Correlation coefficient (r) is shown as a function of model 
radii for (a) p~g = 1.16, (b) p~qg=0.58 and (c) p~g=0.0 .  
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r is p lot ted in steps o f  0.01 using sol id l ines above 0.23. These 
plots show that the best-fitting outer radius changes from 122 
to 126 ,~. if the nucleic acid density is artificially set to zero. 
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tant to refine against the crystal lographic data  not 
only the posit ion but also a magnificat ion factor for 
the electron microscopy image. 

It is possible that s imilar  methods might be ex- 
tended to other macromolecu la r  assemblies,  a l though 
viruses provide part icular ly amenable  examples  for 
several reasons. Ref inement  is facilitated because the 
virus can be represented by a model  with few param- 
eters. Furthermore,  viruses have high (up to 60-fold) 
noncrysta l lographic  r edundancy  enabl ing the refine- 
ment of  very poor starting phases. 

Tsao, Chapman ,  Wu et al. (1992) demonstra ted 
that it is possible to solve a virus capsid structure at 
high resolution through the extension of phases calcu- 
lated ab  ini t io from a spherical-shell  model.  While it 
may be possible to find acceptable parameters  by trial 
and error, at best, this is likely to be t ime-consuming.  
Here, it has been shown that good starting phases 
can be obta ined by ref inement  of  the model  to the 
diffraction data. In the absence of data below 30 ,~ 
resolution, there may be several discretely different 
models  whose fits to the data are of  s imilar  quality. 
An estimate of  outer radius by some other biophysical  
method may  enable  dist inction between these models,  
but all are likely to give initial phase sets that are 
within the convergence radius either of  the true sol- 
ut ion or its Babinet  inverse. The collection and analy- 
sis of  the data of  i somorphous  derivatives have often 
been rate l imit ing to the determinat ion of  viral capsid 
structures. The methods discussed in this paper  could 
accelerate capsid structure determinat ion by dispens- 
ing with the need for i somorphous  derivatives. 
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Fig. 9. The quality of phases calculated from model 122 (solid 
line) and model 128 (dotted line) with reference to back- 
extended phases, plotted as a function of resolution. The best 
phases are obtained within the resolution range of 20-30~. 
Within 40 A resolution, where the data are poor and incomplete, 
the phases are poor. The correlation of model 128 and back- 
extended phases becomes negative at 22 A resolution, explaining 
why phases extended from 20~ resolution converged to the 
Babinet solution. The bold line shows that part of the resolution 
range from which phases were extended. 
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Abstract 

Although the phased translation function was first 
described some time ago [Colman, Fehlhammer & 
Bartels (1976). In Crystallographic Computing 
Techniques, edited by F. R. Ahmed, K. Huml & B. 
Sedhi~ek, pp. 248-258. Copenhagen: Munksgaard], 
it has been little used, especially in the application 
of molecular replacement to macromolocular struc- 
tures. Nevertheless, the procedure is relatively easy 
to apply and deserves wider use. In this paper the 
versatility of the phased translation function in 
a number of different applications is examined 
and experience gained in obtaining optimal results 
in protein structure determination by this meth- 
od is reported. Examples given show how it can 
be used to position an oriented fragment, to locate 
independent components with respect to a common 
crystallographic origin and to choose correctly 
between enantiomorphic space groups. Its perfor- 
mance is compared with other translation functions 
in common use. 

1. Introduction 

Molecular replacement is widely used to determine 
macromolecular structures since there now exists a 
large resource of known structures which may contain 
one or more examples closely homologous to the 
molecule under study. The method proceeds in two 
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stages. Firstly, the homologous molecule of known 
structure, or a fragment of it, is oriented in the unit 
cell of the unknown structure by means of a rotation 
function. Secondly, the correctly oriented homologue 
is positioned with respect to a crystallographic origin 
using a translation function, providing an initial 
model of the unknown crystal structure for further 
refinement. Whereas the rotation functions in current 
use exploit properties of the Patterson function (Ross- 
mann & Blow, 1962; Huber, 1965; Crowther, 1972), 
translation functions may use the Patterson function 
(Crowther & Blow, 1967; Harada, Lifchitz, Berthou 
& Jolles, 1981), the correlation between the observed 
and calculated structure amplitudes, as in the R- 
factor search (Taylor & Morley, 1959; Fujinaga & 
Read, 1987), or phased structure amplitudes, as in 
the phased translation function (Colman, Fehlham- 
mer & Barrels, 1976; Doesburg & Beurskens, 1983; 
Read & Schierbeek, 1988; Cygler & Desrochers, 
1989). 

We have used the phased translation function 
(PTF) to aid the solution of two crystal structures of 
Fab fragments by molecular replacement: the com- 
plex FabD1.3-FabE225 (Bentley, Boulot, Riottot & 
Poljak, 1990) and FabE5.2 (Houdusse, Bentley, 
Boulot, Eisel6 & Poljak, unpublished results). 
Although we used it primarily to locate independent 
components with respect to a common origin, we 
performed additional calculations to test its general 
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